Pemodelan Indeks Pembangunan Manusia di Indonesia dengan Geographically Weighted Regression (GWR)
نویسندگان
چکیده
Indeks Pembangunan Manusia (IPM) merupakan indikator penting untuk mengukur keberhasilan dalam upaya membangun kualitas hidup manusia. IPM menjelaskan bagaimana penduduk dapat mengakses hasil pembangunan hal pendapatan, kesehatan dan pendidikan. Penelitian ini bertujuan mendapatkan pemodelan serta melihat faktor-faktor apa saja yang mempengaruhi di Indonesia tahun 2020. Data pada penelitian berupa data sekunder diperoleh dari Badan Pusat Statistik (BPS). Pemodelan dengan menggunakan regresi linier belum tentu cocok diterapkan diseluruh provinsi ada karena kondisi pendidikan berbeda-beda. Oleh itu, digunakan pendekatan geografis yaitu Geographically Weighted Regression (GWR) memodelkan variabel bebas Harapan Lama Sekolah (HLS), Rata-rata (RLS), Umur Hidup (UHH) Pengeluaran Per Kapita (PPK). Model GWR pengembangan model spasial dimana setiap parameter dihitung lokasi pengamatan, sehingga akan memiliki interpretasi Pada membutuhkan fungsi pembobot, adapun pembobot Adaptive Kernel Gaussian. Hasil menunjukkan bahwa semua berpengaruh terhadap IPM. terbaik dibandingkan standar pemilihan nilai koefisien determinasi terbesar Akaike Information Criterion (AIC) terkecil.
منابع مشابه
Spatial Modeling of Residential Crowding in Alexandria Governorate, Egypt: A Geographically Weighted Regression (GWR) Technique
Despite growing research for residential crowding effects on housing market and public health perspectives, relatively little attention has been paid to explore and model spatial patterns of residential crowding over space. This paper focuses upon analyzing the spatial relationships between residential crowding and socio-demographic variables in Alexandria neighborhoods, Egypt. Global and local...
متن کاملC.5 Geographically Weighted Regression
Geographically weighted regression (GWR) was introduced to the geography literature by Brunsdon et al. (1996) to study the potential for relationships in a regression model to vary in geographical space, or what is termed parametric nonstationarity. GWR is based on the non-parametric technique of locally weighted regression developed in statistics for curve-fitting and smoothing applications, w...
متن کاملA modification to geographically weighted regression
BACKGROUND Geographically weighted regression (GWR) is a modelling technique designed to deal with spatial non-stationarity, e.g., the mean values vary by locations. It has been widely used as a visualization tool to explore the patterns of spatial data. However, the GWR tends to produce unsmooth surfaces when the mean parameters have considerable variations, partly due to that all parameter es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Sains Matematika dan Statistika
سال: 2022
ISSN: ['2460-4542', '2615-8663']
DOI: https://doi.org/10.24014/jsms.v8i2.17886